Pourquoi ne peut-on pas diviser par zéro ?

View previous topic View next topic Go down

Pourquoi ne peut-on pas diviser par zéro ?

Post  Host Intruder on Sat Sep 06, 2008 3:29 pm

Tout d'abord il faut savoir quelque chose. Il n'y a non pas 4 opérations arithmétiques élémentaires (addition, soustraction, multiplication et division) mais uniquement deux ! En fait, la soustraction est une addition maquillée et il en est de même pour la division, qui n'est rien d'autre qu'une multiplication déguisée.

Plus précisément, la soustraction est une opération qui consiste à ajouter l'opposé d'un nombre. La division est une opération qui consiste à multiplier par l'inverse d'un nombre. Focalisons-nous sur la division.

Diviser par zéro revient donc à multiplier l'inverse de zéro. Soit b, un nombre quelconque. Par définition, l'inverse de b est le nombre b' tel que b x b' = 1. Donc trouver l'inverse de 0, c'est trouver un nombre b' tel que 0 x b' = 1. Et ça c'est évidemment impossible, car quand on peut multiplier n'importe quoi par zéro, on obtient toujours zéro.

Il n'existe donc pas de nombre b' tel que 0 x b' = 1. Donc zéro n'a pas d'inverse. Par conséquent on ne peut pas multiplier par l'inverse de zéro. Voilà pourquoi on ne peut pas diviser par zéro.

_________________
Pro pace et fraternitate gentium. "For the peace and brotherhood of men".

Host Intruder
Admin

Number of posts : 181
Age : 30
Location : Mauritius
Registration date : 2008-01-15

View user profile http://thextremecorp.googlepages.com/home

Back to top Go down

View previous topic View next topic Back to top

- Similar topics

 
Permissions in this forum:
You cannot reply to topics in this forum